参考文献 References
[1] Nisonoff A, Wissler FC,Lipman LN. Properties of the major component of a peptic digest of rabbit antibody[J]. Science, 1960, 132(3441):1770-1771
[2] Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov, 2019, 18(8):585-608
[3] Klein C, Brinkmann U, Reichert JM, et al. The present and future of bispecific antibodies for cancer therapy[J]. Nat Rev Drug Discov, 2024, 23(4):301-319
[4] Chen SW,Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies[J]. Antib Ther, 2021, 4(2):73-88
[5] Benschop RJ, Chow CK, Tian Y, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease[J]. MAbs, 2019, 11(6):1175-1190
[6] Lewis SM, Wu X, Pustilnik A, et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface[J]. Nat Biotechnol, 2014, 32(2):191-198
[7] Elliott JM, Ultsch M, Lee J, et al. Antiparallel conformation of knob and hole aglycosylated half-antibody homodimers is mediated by a CH2-CH3 hydrophobic interaction[J]. J Mol Biol, 2014, 426(9):1947-1957
[8] Labrijn AF, Meesters JI, de Goeij BE, et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange[J]. Proc Natl Acad Sci U S A, 2013, 110(13):5145-5150
[9] Steinhardt J, Wu YL, Fleming R, et al. Fab-Arm Exchange Combined with Selective Protein A Purification Results in a Platform for Rapid Preparation of Monovalent Bispecific Antibodies Directly from Culture Media[J]. Pharmaceutics, 2019, 12(1):3
[10] Zhou S, Liu M, Ren F, et al. The landscape of bispecific T cell engager in cancer treatment[J]. Biomark Res, 2021, 9(1):38
[11] Zhu M, Wu B, Brandl C, et al. Blinatumomab, a Bispecific T-cell Engager (BiTE®) for CD-19 Targeted Cancer Immunotherapy: Clinical Pharmacology and Its Implications [J]. Clinical Pharmacokinetics, 2016, 55(10): 1271-1288
[12] Allen C, Zeidan AM,Bewersdorf JP. BiTEs, DARTS, BiKEs and TriKEs-Are Antibody Based Therapies Changing the Future Treatment of AML?[J]. Life (Basel), 2021, 11(6):465
[13] Brennan M, Davison PF,Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments[J]. Science, 1985, 229(4708): 81-83
[14] Nagorsen D, Kufer P, Baeuerle PA, et al. Blinatumomab: a historical perspective[J]. Pharmacol Ther, 2012, 136(3):334-342
[15] Elshiaty M, Schindler H,Christopoulos P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer[J]. Int J Mol Sci, 2021, 22(11):5632
[16] Wang SH, Chen K, Lei Q, et al. The state of the art of bispecific antibodies for treating human malignancies[J]. Embo Molecular Medicine, 2021, 13(9):e14291
[17] Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12:195-208
[18] Ruf P, Bauer HW, Schoberth A, et al. First time intravesically administered trifunctional antibody catumaxomab in patients with recurrent non-muscle invasive bladder cancer indicates high tolerability and local immunological activity[J]. Cancer Immunol Immunother, 2021, 70(9):2727-2735
[19] Kang J, Sun T,Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer[J]. Front Immunol, 2022, 13:1020003
[20] Haikala HM,Jänne PA. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions[J]. Clin Cancer Res, 2021, 27(13):3528-3539
[21] Xue JS, Kong DM, Yao Y, et al. Prediction of Human Pharmacokinetics and Clinical Effective Dose of SI-B001, an EGFR/HER3 Bi-specific Monoclonal Antibody[J]. Journal of Pharmaceutical Sciences, 2020, 109(10):3172-3180
[22] Okaygoun D, Oliveira DD, Soman S, et al. Advances in the management of haemophilia: emerging treatments and their mechanisms[J]. J Biomed Sci, 2021, 28(1):64
[23] Knoebl P, Thaler J, Jilma P, et al. Emicizumab for the treatment of acquired hemophilia A[J]. Blood, 2021, 137(3):410-419
[24] Teranishi-Ikawa Y, Soeda T, Koga H, et al. A bispecific antibody NXT007 exerts a hemostatic activity in hemophilia A monkeys enough to keep a nonhemophilic state[J]. J Thromb Haemost, 2024, 22(2):430-440
[25] Dhillon S. Tebentafusp: First Approval[J]. Drugs, 2022, 82(6):703-710
[26] Middleton MR, McAlpine C, Woodcock VK, et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma[J]. Clin Cancer Res, 2020, 26(22):5869-5878
[27] Nathan P, Hassel JC, Rutkowski P, et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma[J]. N Engl J Med, 2021, 385(13):1196-1206
[28] Nicolò M, Ferro Desideri L, Vagge A, et al. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases[J]. Expert Opin Investig Drugs, 2021, 30(3):193-200
[29] Wykoff CC, Abreu F, Adamis AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials[J]. Lancet, 2022, 399(10326):741-755
[30] Falchi L, Vardhana SA,Salles GA. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities[J]. Blood, 2023, 141(5):467-480
[31] Bock AM, Nowakowski GS,Wang Y. Bispecific Antibodies for Non-Hodgkin Lymphoma Treatment[J]. Curr Treat Options Oncol, 2022, 23(2):155-170
[32] Budde LE, Sehn LH, Matasar M, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study[J]. Lancet Oncol, 2022, 23(8):1055-1065
[33] Cao Y, Marcucci EC,Budde LE. Mosunetuzumab and lymphoma: latest updates from 2022 ASH annual meeting[J]. J Hematol Oncol, 2023, 16(1):69
[34] Holstein SA, Grant SJ,Wildes TM. Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapy in Multiple Myeloma: Moving Into the Future[J]. J Clin Oncol, 2023, 41(27):4416-4429
[35] Moreau P, Garfall AL, van de Donk N, et al. Teclistamab in Relapsed or Refractory Multiple Myeloma[J]. N Engl J Med, 2022, 387(6):495-505
[36] Usmani SZ, Garfall AL, van de Donk N, et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study[J]. Lancet, 2021, 398(10301):665-674
[37] Keam SJ. Cadonilimab: First Approval[J]. Drugs, 2022, 82(12):1333-1339
[38] Collins M, Michot JM, Danlos FX, et al. Inflammatory gastrointestinal diseases associated with PD-1 blockade antibodies[J]. Ann Oncol, 2017, 28(11):2860-2865
[39] Pang XH, Huang ZL, Zhong TT, et al. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity[J]. MAbs, 2023, 15(1):2180794
[40] Peng JQ, Zhu Q, Peng ZR, et al. Patients with positive HER-2 amplification advanced gastroesophageal junction cancer achieved complete response with combined chemotherapy of AK104/cadonilimab (PD-1/CTLA-4 bispecific): A case report[J]. Frontiers in Immunology, 2022, 13:1049518
[41] Zhao YY, Chen G, Chen JH, et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial[J]. Eclinicalmedicine, 2023, 62:102106
[42] Frentzas S, Austria Mislang AR, Lemech C, et al. Phase 1a dose escalation study of ivonescimab (AK112/SMT112), an anti-PD-1/VEGF-A bispecific antibody, in patients with advanced solid tumors[J]. J Immunother Cancer, 2024, 12(4)
[43] Fu Y, Wang L, Liu W, et al. OX40L blockade cellular nanovesicles for autoimmune diseases therapy[J]. J Control Release, 2021, 337:557-570
[44] Tapia-Galisteo A, Compte M, Álvarez-Vallina L, et al. When three is not a crowd: trispecific antibodies for enhanced cancer immunotherapy[J]. Theranostics, 2023, 13(3):1028-1041