期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Medical Research Frontier. 2024; 8: (2) ; 1-8 ; DOI: 10.12208/j.imrf.20240011.

Research progress in bispecific antibodies
双特异性抗体研究进展

作者: 沈洪彪 *, 黄雨譞, 唐奇

南京医科大学国家卫生健康委员会抗体技术重点实验室 江苏南京

*通讯作者: 沈洪彪,单位:南京医科大学国家卫生健康委员会抗体技术重点实验室 江苏南京;

发布时间: 2024-12-25 总浏览量: 112

摘要

双特异性抗体(bispecific antibody,BsAb)是一种含有两个独立抗原结合位点的抗体,具有能够同时结合两个不同抗原或同一抗原的两个不同表位的功能。根据其分子中是否含有Fc段,可分为IgG样BsAb,非IgG样BsAb。由于IgG样的BsAb分子与天然的IgG具有更为相似的分子结构,因此其表现出较长的循环半衰期,且较不容易对该BsAb引起免疫反应。非IgG样BsAb由于不含天然抗体的Fc段,分子量较小,肿瘤渗透性较好,能够更大幅度缩短特异性免疫细胞和肿瘤细胞的间距,在肿瘤杀伤方面发挥更为显著的作用,但缺点是其半衰期较短。本文将对BsAb的分子结构,作用机制及临床应用等方面进行综述。

关键词: 双特异性抗体;分子结构;抗体制备;临床应用

Abstract

Bispecific antibody ( BsAb) is a kind of antibody with two different antigen binding arms. It has the ability to bind two different antigens or two different epitopes of one antigen at the same time. According to whether it contains Fc fragment, it can be divided into IgG-like BsAb and non-IgG-like BsAb. IgG-like BsAb has a longer half-life and is less likely to elicit immune responses against IgG-like BsAb due to its molecular form closer to that of natural antibodies. Non-IgG-like BsAb has a small molecular weight and better tumor permeability because it does not contain the Fc fragment of natural antibody. It can significantly shorten the spacing between specific immune cells and tumor cells and play a more significant tumor killing effect. But the disadvantage is its short half-life. This review provides insight into the molecular structure, mechanism and clinical application of bispecific antibody.

Key words: Bispecific antibody; Molecular structure; Antibody preparation; Clinical application

参考文献 References

[1] Nisonoff A, Wissler FC,Lipman LN. Properties of the major component of a peptic digest of rabbit antibody[J]. Science, 1960, 132(3441):1770-1771

[2] Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov, 2019, 18(8):585-608

[3] Klein C, Brinkmann U, Reichert JM, et al. The present and future of bispecific antibodies for cancer therapy[J]. Nat Rev Drug Discov, 2024, 23(4):301-319

[4] Chen SW,Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies[J]. Antib Ther, 2021, 4(2):73-88

[5] Benschop RJ, Chow CK, Tian Y, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease[J]. MAbs, 2019, 11(6):1175-1190

[6] Lewis SM, Wu X, Pustilnik A, et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface[J]. Nat Biotechnol, 2014, 32(2):191-198

[7] Elliott JM, Ultsch M, Lee J, et al. Antiparallel conformation of knob and hole aglycosylated half-antibody homodimers is mediated by a CH2-CH3 hydrophobic interaction[J]. J Mol Biol, 2014, 426(9):1947-1957

[8] Labrijn AF, Meesters JI, de Goeij BE, et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange[J]. Proc Natl Acad Sci U S A, 2013, 110(13):5145-5150

[9] Steinhardt J, Wu YL, Fleming R, et al. Fab-Arm Exchange Combined with Selective Protein A Purification Results in a Platform for Rapid Preparation of Monovalent Bispecific Antibodies Directly from Culture Media[J]. Pharmaceutics, 2019, 12(1):3

[10] Zhou S, Liu M, Ren F, et al. The landscape of bispecific T cell engager in cancer treatment[J]. Biomark Res, 2021, 9(1):38

[11] Zhu M, Wu B, Brandl C, et al. Blinatumomab, a Bispecific T-cell Engager (BiTE®) for CD-19 Targeted Cancer Immunotherapy: Clinical Pharmacology and Its Implications [J]. Clinical Pharmacokinetics, 2016, 55(10): 1271-1288

[12] Allen C, Zeidan AM,Bewersdorf JP. BiTEs, DARTS, BiKEs and TriKEs-Are Antibody Based Therapies Changing the Future Treatment of AML?[J]. Life (Basel), 2021, 11(6):465

[13] Brennan M, Davison PF,Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments[J]. Science, 1985, 229(4708): 81-83

[14] Nagorsen D, Kufer P, Baeuerle PA, et al. Blinatumomab: a historical perspective[J]. Pharmacol Ther, 2012, 136(3):334-342

[15] Elshiaty M, Schindler H,Christopoulos P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer[J]. Int J Mol Sci, 2021, 22(11):5632

[16] Wang SH, Chen K, Lei Q, et al. The state of the art of bispecific antibodies for treating human malignancies[J]. Embo Molecular Medicine, 2021, 13(9):e14291

[17] Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives[J]. Drug Des Devel Ther, 2018, 12:195-208

[18] Ruf P, Bauer HW, Schoberth A, et al. First time intravesically administered trifunctional antibody catumaxomab in patients with recurrent non-muscle invasive bladder cancer indicates high tolerability and local immunological activity[J]. Cancer Immunol Immunother, 2021, 70(9):2727-2735

[19] Kang J, Sun T,Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer[J]. Front Immunol, 2022, 13:1020003

[20] Haikala HM,Jänne PA. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions[J]. Clin Cancer Res, 2021, 27(13):3528-3539

[21] Xue JS, Kong DM, Yao Y, et al. Prediction of Human Pharmacokinetics and Clinical Effective Dose of SI-B001, an EGFR/HER3 Bi-specific Monoclonal Antibody[J]. Journal of Pharmaceutical Sciences, 2020, 109(10):3172-3180

[22] Okaygoun D, Oliveira DD, Soman S, et al. Advances in the management of haemophilia: emerging treatments and their mechanisms[J]. J Biomed Sci, 2021, 28(1):64

[23] Knoebl P, Thaler J, Jilma P, et al. Emicizumab for the treatment of acquired hemophilia A[J]. Blood, 2021, 137(3):410-419

[24] Teranishi-Ikawa Y, Soeda T, Koga H, et al. A bispecific antibody NXT007 exerts a hemostatic activity in hemophilia A monkeys enough to keep a nonhemophilic state[J]. J Thromb Haemost, 2024, 22(2):430-440

[25] Dhillon S. Tebentafusp: First Approval[J]. Drugs, 2022, 82(6):703-710

[26] Middleton MR, McAlpine C, Woodcock VK, et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma[J]. Clin Cancer Res, 2020, 26(22):5869-5878

[27] Nathan P, Hassel JC, Rutkowski P, et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma[J]. N Engl J Med, 2021, 385(13):1196-1206

[28] Nicolò M, Ferro Desideri L, Vagge A, et al. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases[J]. Expert Opin Investig Drugs, 2021, 30(3):193-200

[29] Wykoff CC, Abreu F, Adamis AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials[J]. Lancet, 2022, 399(10326):741-755

[30] Falchi L, Vardhana SA,Salles GA. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities[J]. Blood, 2023, 141(5):467-480

[31] Bock AM, Nowakowski GS,Wang Y. Bispecific Antibodies for Non-Hodgkin Lymphoma Treatment[J]. Curr Treat Options Oncol, 2022, 23(2):155-170

[32] Budde LE, Sehn LH, Matasar M, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study[J]. Lancet Oncol, 2022, 23(8):1055-1065

[33] Cao Y, Marcucci EC,Budde LE. Mosunetuzumab and lymphoma: latest updates from 2022 ASH annual meeting[J]. J Hematol Oncol, 2023, 16(1):69

[34] Holstein SA, Grant SJ,Wildes TM. Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapy in Multiple Myeloma: Moving Into the Future[J]. J Clin Oncol, 2023, 41(27):4416-4429

[35] Moreau P, Garfall AL, van de Donk N, et al. Teclistamab in Relapsed or Refractory Multiple Myeloma[J]. N Engl J Med, 2022, 387(6):495-505

[36] Usmani SZ, Garfall AL, van de Donk N, et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study[J]. Lancet, 2021, 398(10301):665-674

[37] Keam SJ. Cadonilimab: First Approval[J]. Drugs, 2022, 82(12):1333-1339

[38] Collins M, Michot JM, Danlos FX, et al. Inflammatory gastrointestinal diseases associated with PD-1 blockade antibodies[J]. Ann Oncol, 2017, 28(11):2860-2865

[39] Pang XH, Huang ZL, Zhong TT, et al. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity[J]. MAbs, 2023, 15(1):2180794

[40] Peng JQ, Zhu Q, Peng ZR, et al. Patients with positive HER-2 amplification advanced gastroesophageal junction cancer achieved complete response with combined chemotherapy of AK104/cadonilimab (PD-1/CTLA-4 bispecific): A case report[J]. Frontiers in Immunology, 2022, 13:1049518

[41] Zhao YY, Chen G, Chen JH, et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial[J]. Eclinicalmedicine, 2023, 62:102106

[42] Frentzas S, Austria Mislang AR, Lemech C, et al. Phase 1a dose escalation study of ivonescimab (AK112/SMT112), an anti-PD-1/VEGF-A bispecific antibody, in patients with advanced solid tumors[J]. J Immunother Cancer, 2024, 12(4)

[43] Fu Y, Wang L, Liu W, et al. OX40L blockade cellular nanovesicles for autoimmune diseases therapy[J]. J Control Release, 2021, 337:557-570

[44] Tapia-Galisteo A, Compte M, Álvarez-Vallina L, et al. When three is not a crowd: trispecific antibodies for enhanced cancer immunotherapy[J]. Theranostics, 2023, 13(3):1028-1041

引用本文

沈洪彪, 黄雨譞, 唐奇, 双特异性抗体研究进展[J]. 国际医药研究前沿, 2024; 8: (2) : 1-8.