参考文献 References
[1] Elshafie H S, Camele I, Mohamed A A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin[J]. Int J Mol Sci,2023,24(4).
[2] Atanasov A G, Zotchev S B, Dirsch V M, et al. Natural products in drug discovery: advances and opportunities[J]. Nat Rev Drug Discov,2021,20(3):200-216.
[3] Li G, Lou H X. Strategies to diversify natural products for drug discovery[J]. Med Res Rev,2018,38(4):1255-1294.
[4] Kelwick R, Macdonald J T, Webb A J, et al. Developments in the tools and methodologies of synthetic biology[J]. Front Bioeng Biotechnol,2014,2:60.
[5] Yang D, Park S Y, Park Y S, et al. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis[J]. Trends Biotechnol,2020,38(7):745-765.
[6] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature,2013,496(7446):528.
[7] Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science,2010,330(6000):70-74.
[8] Galanie S, Thodey K, Trenchard I J, et al. Complete biosynthesis of opioids in yeast[J]. Science,2015,349(6252): 1095-1100.
[9] Tan Z, Li J, Hou J, et al. Designing artificial pathways for improving chemical production[J]. Biotechnol Adv,2023,64: 108119.
[10] Ganeshan S, Kim S H, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives[J]. Bioresour Bioprocess,2021,8(1):63.
[11] Xia J, Wang G, Lin J, et al. Advances and Practices of Bioprocess Scale-up[J]. Adv Biochem Eng Biotechnol,2016, 152: 137-151.
[12] 夏建业,刘晶,庄英萍. 人工智能时代发酵优化与放大技术的机遇与挑战[J]. 生物工程学报,2022,38(11):4180-4199.
[13] Shoda S, Uyama H, Kadokawa J, et al. Enzymes as Green Catalysts for Precision Macromolecular Synthesis[J]. Chem Rev,2016,116(4):2307-2413.
[14] Victorino D S A I, Gonsales D R N, Antonio D O S F, et al. Enzyme engineering and its industrial applications[J]. Biotechnol Appl Biochem,2022,69(2):389-409.
[15] Arnold F H. Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture)[J]. Angew Chem Int Ed Engl, 2019,58(41):14420-14426.
[16] Zeymer C, Hilvert D. Directed Evolution of Protein Catalysts[J]. Annu Rev Biochem,2018,87:131-157.
[17] Wang Y, Xue P, Cao M, et al. Directed Evolution: Methodologies and Applications[J]. Chem Rev,2021,121(20): 12384-12444.
[18] Markel U, Essani K D, Besirlioglu V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution [J]. Chem Soc Rev,2020,49(1):233-262.
[19] Xu S Y, Zhou L, Xu Y, et al. Recent advances in structure-based enzyme engineering for functional reconstruction[J]. Biotechnol Bioeng,2023,120(12):3427-3445.
[20] Ding Y, Perez-Ortiz G, Peate J, et al. Redesigning Enzymes for Biocatalysis: Exploiting Structural Understanding for Improved Selectivity[J]. Front Mol Biosci,2022,9:908285.
[21] Chica R A, Doucet N, Pelletier J N. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design[J]. Curr Opin Biotechnol, 2005,16(4):378-384.
[22] Phintha A, Chaiyen P. Rational and mechanistic approaches for improving biocatalyst performance,[J]. Chem Catal,2022, 2(10):2614-2643.